Correcting the Monte Carlo Optimal Stopping Bias

Tyson Whitehead

SHARCNet,
London Ontario N6A 5B7

Matt Davison

Departments of Applied Mathematics and of Statistical & Actuarial Sciences, The University of Western Ontario
London, Ontario, Canada N6A 5B7

Mark Reesor

Department of Applied Mathematics
The University of Western Ontario
London, Ontario, Canada N6A 5B7

1 Abstract

We present a new method for reducing the bias present in Monte Carlo estimators of the discrete finite-time-horizon optimal-stopping problem. This is done by subtracting an asymptotic expression for the bias, which we derive using large-sample theory, from the estimators at each step in order to produce bias-corrected estimators.

The simple closed form of the derived correction, easily evaluated in the context of a simulation, makes this a work of practical significance. We also present the results of applying this method, and that of a nonparametric bootstrap, to reduce the bias in pricing a well-studied multivariate problem via the stochastic mesh technique.